A novel 110-kDa receptor protein is involved in endocytic uptake of decorin by human skin fibroblasts

ScientificWorldJournal. 2006 Jan 17:6:35-52. doi: 10.1100/tsw.2006.17.

Abstract

The small leucine-rich proteoglycan (SLRP) decorin is efficiently internalized by a variety of cultured cells. A 51-kDa protein has previously been described as a receptor mediating endocytosis of decorin and of the structurally related SLRP biglycan. Recent findings suggest that endocytosis of SLRPs may also be mediated by additional receptors. The class-A scavenger receptor, the endocytic mannose receptor, the epidermal growth factor receptor, and insulin-like growth factor-I receptor have emerged as candidates. We used a combined approach of immunoprecipitation and photoactivated cross-linking to identify endocytosis receptors for decorin in human skin fibroblasts. Decorin was purified by HPLC-DEAE-ion exchange chromatography from the secretions of human skin fibroblasts under nondenaturing conditions. Confocal immunofluorescence microscopy revealed that both biotinylated decorin and decorin conjugated to the heterobifunctional cross-linker sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1-3'-dithiopropionate (SASD) were endocytosed with equal efficiency. SASD-conjugated decorin was added to [35S]-methionine-labeled fibroblasts and cross-linked intracellularly to receptor molecules by photoactivation on endocytic uptake. Cross-linked decorin-receptor complexes were purified from the extracts of trypsin-treated fibroblasts by anion exchange chromatography and immunoprecipitation with a decorin-specific antiserum. Analysis by 2D electrophoresis and autoradiography revealed that decorin was specifically cross-linked to a protein of 110 kDa, which exhibited an isoelectric point of 5.5. In a second approach, unlabeled fibroblasts were subjected to decorin endocytosis and photoactivated cross-linking followed by Western blotting of DEAE-purified cell extracts. A shift of biotinylated decorin immunoreactivity from 165 kDa (decorin-receptor complex) to 54 kDa (SASD-conjugated biotinylated decorin) was noted on reductive cleavage of the cross-linker, representing a difference in molecular weight of approximately 110 kDa. The identification of a 110-kDa protein as a novel endocytosis receptor for decorin provides further support for the emerging concept of a redundancy of receptor molecules in the endocytosis of SLRP.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cells, Cultured
  • Decorin
  • Endocytosis / physiology*
  • Extracellular Matrix Proteins / metabolism*
  • Fibroblasts / metabolism*
  • Humans
  • Molecular Weight
  • Proteoglycans / metabolism*
  • Receptors, Cell Surface / chemistry*
  • Receptors, Cell Surface / metabolism*

Substances

  • DCN protein, human
  • Decorin
  • Extracellular Matrix Proteins
  • Proteoglycans
  • Receptors, Cell Surface