Effects of tramadol and O-demethyl-tramadol on human 5-HT reuptake carriers and human 5-HT3A receptors: a possible mechanism for tramadol-induced early emesis

Eur J Pharmacol. 2006 Feb 15;531(1-3):54-8. doi: 10.1016/j.ejphar.2005.11.054. Epub 2006 Jan 19.

Abstract

([3H]5-HT)-uptake and patch-clamp techniques were used to study the actions of (+) and (-) tramadol and the active metabolites of tramadol, (+) and (-) O-demethyl-tramadol on the human serotonin (5-HT) transporter and the human 5-HT3A receptor, stably expressed in HEK-293 cells. The (+) and (-) enantiomers of tramadol suppressed the human 5-HT transporter concentration-dependently (IC50=1.0 and 0.8 microM, respectively), resulting in 97% and 87% transport inhibition at their respective initial plasma concentrations (9.5 microM). The (+) and (-) enantiomers of the active tramadol metabolite were less potent than tramadol in inhibiting the human 5-HT transporter (IC50=15 and 44 microM, respectively), resulting in 19.2% and 4.8% transport inhibition at their highest plasma concentrations (2.5 microM). In contrast to their potent suppression of the 5-HT transporter, both, (+) and (-) tramadol inhibited 5-HT (30 microM)-induced currents only at substantially higher concentrations (IC50=199 and 251 microM, respectively), resulting in only 6% and 4% inhibition at the initial maximum plasma concentration. A similar low potent inhibition of human 5-HT(3A) receptors was found for (+) and (-) O-demethyl-tramadol (IC50=158 and 63 microM, respectively). In conclusion, at clinical plasma concentrations tramadol potently suppresses the human 5-HT transporter, whereas it has only a slight effect on the human 5-HT3A receptor. The results are compatible with a possible mechanism for tramadol-induced early emesis involving the serotonergic system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analgesics, Opioid / pharmacology
  • Cell Line
  • Citalopram / pharmacology
  • Dose-Response Relationship, Drug
  • Humans
  • Membrane Potentials / drug effects
  • Receptors, Serotonin, 5-HT3 / genetics
  • Receptors, Serotonin, 5-HT3 / physiology*
  • Selective Serotonin Reuptake Inhibitors / pharmacology
  • Serotonin / metabolism
  • Serotonin / pharmacology
  • Serotonin Plasma Membrane Transport Proteins / genetics
  • Serotonin Plasma Membrane Transport Proteins / physiology*
  • Tramadol / analogs & derivatives*
  • Tramadol / pharmacology*
  • Tritium
  • Vomiting / etiology
  • Vomiting / physiopathology

Substances

  • Analgesics, Opioid
  • Receptors, Serotonin, 5-HT3
  • Serotonin Plasma Membrane Transport Proteins
  • Serotonin Uptake Inhibitors
  • Citalopram
  • Tritium
  • O-demethyltramadol
  • Serotonin
  • Tramadol