VP22 fusion protein-based dominant negative mutant can inhibit hepatitis B virus replication

World J Gastroenterol. 2005 Nov 7;11(41):6429-32. doi: 10.3748/wjg.v11.i41.6429.

Abstract

Aim: To investigate the inhibitory effect of VP22 fusion protein-based dominant negative (DN) mutant on Hepatitis Bvrus (HBV) replication.

Methods: Full-length or truncated fragment of VP22 was fused to C terminal of HBV core protein (HBc), and subcloned into pcDNA3.1 (-) vector, yielding eukaryotic expression plasmids of DN mutant. After transfection into HepG2.2.15 cells, the expression of DN mutant was identified by immunofluorescence staining. The inhibitory effect of DN mutant on HBV replication was indexed as the supernatant HBsAg concentration determined by RIA and HBV-DNA content by fluorescent quantification-PCR (FQ-PCR).Meanwhile, metabolism of HepG2.2.15 cells was evaluated by MTT colorimetry.

Results: VP22-based DN mutants and its truncated fragment were expressed in HepG2.2.15 cells, and had no toxic effect on host cells. DN mutants could inhibit HBV replication and the transduction ability of mutant-bearing protein had a stronger inhibitory effect on HBV replication. DN mutants with full length of VP22 had the strongest inhibitory effect on HBV replication, reducing the HBsAg concentration by 81.94%, and the HBV-DNA content by 72.30%. MTT assay suggested that there were no significant differences in cell metabolic activity between the groups.

Conclusion: VP22-based DN mutant can inhibit HBV replication effectively.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular
  • Cell Line, Tumor
  • Genetic Therapy / methods*
  • Hepatitis B / therapy*
  • Hepatitis B / virology
  • Hepatitis B virus / genetics
  • Hepatitis B virus / growth & development*
  • Humans
  • Liver Neoplasms
  • Mutagenesis
  • Viral Fusion Proteins / genetics
  • Viral Structural Proteins / genetics*
  • Virus Replication*

Substances

  • Viral Fusion Proteins
  • Viral Structural Proteins
  • herpes simplex virus type 1 protein VP22