Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups

Photochem Photobiol Sci. 2006 Jan;5(1):56-65. doi: 10.1039/b513511g. Epub 2005 Nov 22.

Abstract

The photodynamic effect of novel cationic porphyrins, with different pattern of meso-substitution by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl (A) and 4-(trifluoromethyl)phenyl (B) groups, have been studied in both solution bearing photooxidizable substrates and in vitro on a typical Gram-negative bacterium Escherichia coli. In these sensitizers, the cationic groups are separated from the macrocycle ring by a propoxy spacer. Thus, the charges have a high mobility and a minimal influence on photophysical properties of the porphyrin. These compounds produce singlet molecular oxygen, O2(1Delta(g)), with quantum yields of approximately 0.41-0.53 in N,N-dimethylformamide. In methanol, the l-tryptophan photodecomposition increases with the number of cationic charges in the sensitizer. In vitro investigations show that cationic porphyrins are rapidly bound to E. coli cells in approximately 5 min. A higher binding was found for A3B3+ porphyrin, which is tightly bound to cells still after three washing steps. Photosensitized inactivation of E. coli cellular suspensions follows the order: A3B3+ > A44+>> ABAB2+ > AB3+. Under these conditions, a negligible effect was found for 5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (TPPS4(4-)) that characterizes an anionic sensitizer. Also, the results obtained for these new cationic porphyrins were compared with those of 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin (TTAP4+), which is a standard active sensitizer established to eradicate E. coli. The photodynamic activity of TTAP4+ is quite similar to that produced by A4(4+). Studies in an anoxic condition indicate that oxygen is necessary for the mechanism of action of photodynamic inactivation of bacteria. The higher photodynamic activity of A3B3+ was confirmed by growth delay experiments. Photodynamic inactivation capacities of these sensitizers were also evaluated in E. coli cells immobilized on agar surfaces. Under these conditions, A3B3+ porphyrin retains a high activity to inactivate localized bacterial cells. Therefore, tricationic porphyrin A3B3+ is an interesting sensitizer with potential applications in photodynamic inactivation of bacteria in liquid suspensions or on surfaces.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benzene Derivatives / chemistry
  • Cell Survival / drug effects
  • Cell Survival / radiation effects
  • Cells, Cultured
  • Escherichia coli / cytology
  • Escherichia coli / drug effects*
  • Escherichia coli / radiation effects
  • Light
  • Microbial Sensitivity Tests
  • Molecular Structure
  • Photosensitizing Agents / chemistry
  • Photosensitizing Agents / pharmacology*
  • Porphyrins / chemistry
  • Porphyrins / pharmacology*
  • Spectrometry, Fluorescence
  • Structure-Activity Relationship

Substances

  • Benzene Derivatives
  • Photosensitizing Agents
  • Porphyrins