Composition fluctuations in a homopolymer-diblock copolymer mixture covering the three-dimensional Ising, isotropic Lifshitz, and Brasovskiĭ classes of critical universality

J Chem Phys. 2005 Sep 22;123(12):124904. doi: 10.1063/1.1997136.

Abstract

The phase behavior of a three-component polymer blend consisting of a critical mixture of polybutadiene and polystyrene (PB/PS) with varying amount of a symmetric PB-PS diblock copolymer was explored with small-angle neutron scattering. Our focus were thermal composition fluctuations which we discuss in terms of mean field, three-dimensional Ising, isotropic Lifshitz, and Brasovskiĭ classes of critical universality. Particular attention is spent to the observation of a narrow reentrant two-phase regime and double critical point in the Lifshitz critical regime as well as the Lifshitz line. Critical exponents of the isotropic Lifshitz case are proposed in spite of the demonstrated nonexistence of the isotropic Lifshitz critical point. The Ginzburg number (Gi) and Flory-Huggins parameter were determined over the whole diblock concentration range; Gi changes by three orders of magnitude, two orders of magnitude of that change over a 0.03 diblock concentration interval within the isotropic Lifshitz regime.