Liesegang pattern formation in kappa-carrageenan gel

Langmuir. 2006 Jan 3;22(1):349-52. doi: 10.1021/la0522350.

Abstract

We report a new class of the spatial pattern formation process in which the gel plays essential roles. The system studied here is the solution of kappa-carrageenan in which potassium chloride is diffused. The solution transforms into the gel state with the diffusion of potassium chloride. Then the stripe pattern, which is perpendicular to the direction of the diffusion of potassium chloride, appears within the gel. The pattern thus formed in the gel is studied as a function of the concentration of the solution of potassium chloride. We find that the dense region of the stripe pattern consists of the liquid crystalline gel, whereas the dilute region is the amorphous gel. The transition from the amorphous gel to the liquid crystalline gel, hence, occurs in the gel state of kappa-carrageenan. The gel behaves as a pattern-forming substance as well as the supporting medium of the pattern in this system. The period and the thickness of the layers of liquid crystalline gel are analyzed. Both the period and the thickness of the layers are found to depend strongly on the concentration of the solution of potassium chloride.