Single-molecule analysis of cadherin-mediated cell-cell adhesion

J Cell Sci. 2006 Jan 1;119(Pt 1):66-74. doi: 10.1242/jcs.02719.

Abstract

Cadherins are ubiquitous cell surface molecules that are expressed in virtually all solid tissues and localize at sites of cell-cell contact. Cadherins form a large and diverse family of adhesion molecules, which play a crucial role in a multitude of cellular processes, including cell-cell adhesion, motility, and cell sorting in maturing organs and tissues, presumably because of their different binding capacity and specificity. Here, we develop a method that probes the biochemical and biophysical properties of the binding interactions between cadherins expressed on the surface of living cells, at the single-molecule level. Single-molecule force spectroscopy reveals that classical cadherins, N-cadherin and E-cadherin, form bonds that display adhesion specificity, and a pronounced difference in adhesion force and reactive compliance, but not in bond lifetime. Moreover, their potentials of interaction, derived from force-spectroscopy measurements, are qualitatively different when comparing the single-barrier energy potential for the dissociation of an N-cadherin-N-cadherin bond with the double-barrier energy potential for an E-cadherin-E-cadherin bond. Together these results suggest that N-cadherin and E-cadherin molecules form homophilic bonds between juxtaposed cells that have significantly different kinetic and micromechanical properties.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • CHO Cells
  • Cadherins / metabolism*
  • Calcium / metabolism
  • Cell Adhesion / physiology*
  • Cricetinae
  • Microscopy, Atomic Force / instrumentation
  • Microscopy, Atomic Force / methods*

Substances

  • Cadherins
  • Calcium