Post harvest spoilage of sweetpotato in tropics and control measures

Crit Rev Food Sci Nutr. 2005;45(7-8):623-44. doi: 10.1080/10408390500455516.

Abstract

Sweetpotato storage roots are subjected to several forms of post harvest spoilage in the tropical climate during transportation from farmers' field to market and in storage. These are due to mechanical injury, weight loss, sprouting, and pests and diseases. Sweetpotato weevil is the single most important storage pest in tropical regions for which no control measures or resistant variety are yet available. Several microorganisms (mostly fungi) have been found to induce spoilage in stored sweetpotatoes. The most important among them are Botryodiplodia theobromae, Ceratocystis fimbriata, Fusarium spp., and Rhizopus oryzae. The other less frequently occurring spoilage microorganisms include Cochliobolus lunatus (Curvularia lunata), Macrophomina phaseolina, Sclerotium rolfsii, Rhizoctonia solani, Plenodomus destruens. Microbial spoilage of sweetpotato is found associated with decrease in starch, total sugar, organic acid (ascorbic acid and oxalic acid) contents with concomitant increase in polyphenols, ethylene, and in some instances phytoalexins. Several methods are used to control microbial spoilage. Curing to promote wound healing is found as the most suitable method to control microbial spoilage. Curing naturally occurs in tropical climates where mean day temperature during sweetpotato harvesting season (February-April) invariably remains at 32-35 degrees C and relative humidity at 80-95%. Sweetpotato varieties varied in their root dry matter content, and low root dry matter content attributed for their high curing efficiency. Curing efficiency of varieties also differed in response to curing periods. Fungicide treatment, bio-control, gamma irradiation, hydro warming, and storage in sand and saw dust were found to have intermediate impacts in controlling spoilage and enhancing shelf life of sweetpotato roots. Breeding program has to be chalked out to develop new varieties suitable to curing under tropical conditions in addition to developing varieties having multi-spectrum resistance to major post harvest rot pathogens and sweetpotato weevils.

Publication types

  • Review

MeSH terms

  • Food Contamination / analysis
  • Food Contamination / prevention & control
  • Food Handling / methods*
  • Food Microbiology*
  • Food Preservation / methods*
  • Humans
  • Ipomoea batatas* / microbiology
  • Nutritive Value
  • Plant Roots
  • Time Factors
  • Tropical Climate*