Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart

Prog Biophys Mol Biol. 2006 Jan-Apr;90(1-3):414-43. doi: 10.1016/j.pbiomolbio.2005.06.006.

Abstract

Blockade of the delayed rectifier potassium channel current, I(Kr), has been associated with drug-induced QT prolongation in the electrocardiogram and life-threatening cardiac arrhythmias. However, it is increasingly clear that compound-induced interactions with multiple cardiac ion channels may significantly affect QT prolongation that would result from inhibition of only I(Kr) [Redfern, W.S., Carlsson, L., et al., 2003. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58(1), 32-45]. Such an assessment may not be feasible in vitro, due to multi-factorial processes that are also time-dependent and highly non-linear. Limited preclinical data, I(Kr) hERG assay and canine Purkinje fiber (PF) action potentials (APs) [Gintant, G.A., Limberis, J.T., McDermott, J.S., Wegner, C.D., Cox, B.F., 2001. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J. Cardiovasc. Pharmacol. 37(5), 607-618], were used for two test compounds in a systems-based modeling platform of cardiac electrophysiology [Muzikant, A.L., Penland, R.C., 2002. Models for profiling the potential QT prolongation risk of drugs. Curr. Opin. Drug. Discov. Dev. 5(1), 127-35] to: (i) convert a canine myocyte model to a PF model by training functional current parameters to the AP data; (ii) reverse engineer the compounds' effects on five channel currents other than I(Kr), predicting significant IC(50) values for I(Na+), sustained and I(Ca2+), L-type , which were subsequently experimentally validated; (iii) use the predicted (I(Na+), sustained and I(Ca2+), L-type) and measured (I(Kr)) IC(50) values to simulate dose-dependent effects of the compounds on APs in endocardial, mid-myocardial, and epicardiac ventricular cells; and (iv) integrate the three types of cellular responses into a tissue-level spatial model, which quantifiably predicted no potential for the test compounds to induce either QT prolongation or increased transmural dispersion of repolarization in a dose-dependent and reverse rate-dependent fashion, despite their inhibition of I(Kr) in vitro.

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology
  • Animals
  • Anti-Arrhythmia Agents / therapeutic use*
  • Computer Simulation*
  • Dogs
  • Drug Evaluation, Preclinical
  • Electrocardiography
  • Heart Ventricles / drug effects
  • Heart Ventricles / physiopathology
  • Ion Channels / drug effects
  • Ion Channels / physiology
  • Long QT Syndrome / drug therapy*
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / physiology
  • Purkinje Fibers / drug effects
  • Purkinje Fibers / physiopathology
  • Torsades de Pointes / drug therapy*

Substances

  • Anti-Arrhythmia Agents
  • Ion Channels