Zinc dyshomeostasis: a key modulator of neuronal injury

J Alzheimers Dis. 2005 Nov;8(2):93-108; discussion 209-15. doi: 10.3233/jad-2005-8202.

Abstract

Zn2+ is a potently toxic cation involved in the neuronal injury observed in cerebral ischemia, epilepsy, and brain trauma. Toxic Zn2+ accumulation may result from either trans-synaptic Zn2+movement and/or cation mobilization from intracellular sites. To gain entry to the cytosol, Zn2+ can flux through glutamate receptor-associated channels, voltage-sensitive calcium channels, or Zn2+-sensitive membrane transporters, while metallothioneins and mitochondria provide sites of intracellular Zn2+ release. Intracellular Zn2+ homeostasis is sensitive to patho-physiological environmental changes, such as acidosis, inflammation and oxidative stress. The mechanisms by which Zn2+ exerts its neurotoxicity include mitochondrial and extra-mitochondrial production of reactive oxygen species and disruption of metabolic enzymatic activity, ultimately leading to activation of apoptotic and/or necrotic processes. Beside acute neuronal injury, an exciting new area of investigation is offered by the role of Zn2+ dysmetabolism in Alzheimer's disease as the cation acts as a potent trigger for Abeta aggregation and plaque formation. Finally, recent findings suggest that alteration of Zn2+ homeostasis might also be a critical contributor to aging-related neurodegenerative processes. Thus, multiple evidence suggest that modulation of intracellular and extracellular Zn2+ might be an important therapeutical target for the treatment of a vast array of neurological conditions ranging from stroke to Alzheimer's disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / physiopathology*
  • Amyloid beta-Peptides / metabolism
  • Animals
  • Apoptosis / physiology*
  • Brain / physiopathology*
  • Homeostasis / physiology*
  • Humans
  • Mitochondria / physiology
  • Necrosis
  • Oxidative Stress / physiology
  • Reactive Oxygen Species / metabolism
  • Risk Factors
  • Zinc / metabolism*

Substances

  • Amyloid beta-Peptides
  • Reactive Oxygen Species
  • Zinc