Nonionic surfactant sorption onto the bacterial cell surface: a multi-interaction isotherm

Langmuir. 2005 Nov 22;21(24):11368-72. doi: 10.1021/la051388k.

Abstract

The adsorption of linear polyoxyethylene (POE) alcohol surfactants of the form CxEy onto the surface of a Sphingomonas sp. has been examined. For this study, the alkyl chain length (x) was fixed at 12 and the POE chain length (y) was varied, with y = 4, 7, 9, 10, and 23 ethylene oxide units. Langmuirian isotherms were observed for C12E4 and C12E23, and more complex isotherms were observed for the three intermediate POE chain length surfactants, with C12E7 and C12E9 exhibiting strong S-shaped isotherms. All isotherms showed plateaus near the critical micelle concentration (CMC) with the plateau decreasing with increasing POE chain length. A simple multi-interaction isotherm is proposed that models the sorption isotherm as the sum of two interactions. The first interaction describes monolayer adsorption, whereas the second interaction describes lateral interactions between sorbed surfactant molecules and the formation of surface aggregates. Varying ratios of these two interactions as a function of POE chain length gives rise to the variety of observed isotherm shapes. Results of the isotherm analysis suggest that lateral interactions dominate for surfactants with low POE chain lengths, and the lateral interactions decrease as the POE chain length is increased.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adsorption
  • Bacterial Adhesion*
  • Cell Wall / chemistry
  • Polyethylene Glycols
  • Sphingomonas / physiology
  • Surface-Active Agents / chemistry*
  • Temperature

Substances

  • Surface-Active Agents
  • Polyethylene Glycols