Crystallization kinetics of colloidal spheres under stationary shear flow

Langmuir. 2005 Nov 22;21(24):10976-82. doi: 10.1021/la051490h.

Abstract

A systematic experimental study of dispersions of charged colloidal spheres is presented on the effect of steady shear flow on nucleation and crystal growth rates. In addition, the nonequilibrium phase diagram as it relates to the melting line is measured. Shear flow is found to strongly affect induction times, crystal growth rates, and the location of the melting line. The main findings are that (1) the crystal growth rate for a given concentration exhibits a maximum as a function of the shear rate; (2) contrary to the monotonic increase in the growth rate with increasing concentration in the absence of flow, a maximum of the crystal growth rate as a function of concentration is observed for sheared systems; and (3) the induction time for a given concentration exhibits a maximum as a function of the shear rate. These findings are partly explained on a qualitative level.