Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation

J Am Chem Soc. 2005 Nov 9;127(44):15595-601. doi: 10.1021/ja0544915.

Abstract

Here, we present a systematic study on the influence of the bioligand deferoxamine mesylate on the crystallization and assembly behavior of tungsten oxide in a soft-chemistry process. Without deferoxamine mesylate, this approach yields pseudo-single crystalline tungstite nanoplatelets consisting of a large number of crystallographically almost perfectly aligned primary crystallites. In the presence of a constant amount of deferoxamine, the particle morphology drastically changes with temperature, ranging from wormlike organic-inorganic hybrid nanostructures to single-crystalline tungsten oxide nanowires, highlighting the role of the bioligand in controlling the crystal growth and assembly behavior. The nanowires have a uniform diameter of about 1.3 nm, an aspect ratio of more than 500, and the structural flexibility of tungsten oxide. The presented process is based on the combination of biomimetic construction principles with nonaqueous sol-gel chemistry, thus combining the advantages of both tools, excellent control over particle morphology and high crystallinity at low temperature.