Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line

Pancreas. 2005 Nov;31(4):317-24. doi: 10.1097/01.mpa.0000179731.46210.01.

Abstract

Objectives: In pancreatic cancer, several important survival molecules such as EGFR, NF-kappaB, and Bcl-2 or Bcl-XL are highly activated. Thus, agents that inhibit NF-kappaB activation, together with agents that directly inhibit Bcl-2 or Bcl-XL protein function, may lead to enhanced cell killing. (-)-Gossypol, a natural polyphenolic compound isolated from cottonseeds, is a dual and potent small-molecule inhibitor of Bcl-2 and Bcl-XL proteins, with a Ki value in the 300-600 nM range for both proteins.

Methods: : The BxPC-3 human pancreatic cell line was used in this study. (-)-Gossypol was dissolved in DMSO at 20 mmol/L as stock solution, and genistein was dissolved in 0.1 M Na2CO3 to make a 10 mM stock solution. For cell viability, apoptosis, and NF-kappaB studies, MTT assay, histone/DNA ELISA, and Electrophoretic Mobility Shift Assay (EMSA) were used, respectively. Coimmunoprecipitation experiments were designed to study Bcl-XL/Bim heterodimerization, and Western blots to study cytochrome c release.

Results: (-)-Gossypol showed a concentration-dependent growth inhibition effect against BxPC-3 pancreatic cancer cell line and induced apoptosis with no effect on normal peripheral blood lymphocytes. Results from coimmunoprecipitation experiments indicate that the effect of (-)-gossypol is mediated, at least, in part via disrupting the heterodimerization of Bcl-XL with Bim in BxPC-3 pancreatic cancer cells. (-)-Gossypol completely disrupts Bcl-XL/Bim heterodimerization with no change in the total Bcl-XL or Bim protein, indicating that (-)-gossypol treatment does not affect the levels of Bcl-XL and Bim proteins. We have previously shown that genistein, a prominent soy isoflavone, transcriptionally down-regulates Bcl-2, Bcl-XL, VEGF, MMP-9, and uPAR via inhibiting NF-kappaB activity. In this study, genistein down-regulated NF-kappaB DNA binding activity and inhibited the growth of BxPC-3 pancreatic cancer cells. In addition, the combination of (-)-gossypol with genistein showed significantly greater growth inhibition compared with either agent alone.

Conclusion: From these results, we conclude that inhibition of NF-kappaB activity and direct inhibition of Bcl-2 or Bcl-XL function should serve as a novel strategy for pancreatic cancer therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cytochromes c / metabolism
  • Drug Synergism
  • Genistein / pharmacology*
  • Gossypol / pharmacology*
  • Humans
  • NF-kappa B / metabolism
  • Pancreatic Neoplasms / drug therapy*
  • Pancreatic Neoplasms / pathology
  • Proto-Oncogene Proteins c-bcl-2 / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-bcl-2 / physiology
  • bcl-X Protein / antagonists & inhibitors*
  • bcl-X Protein / physiology

Substances

  • NF-kappa B
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-X Protein
  • Cytochromes c
  • Genistein
  • Gossypol