Emulsion stability based on phase behavior in sodium naphthenates containing systems: gels with a high organic solvent content

J Colloid Interface Sci. 2003 Jan 15;257(2):299-309. doi: 10.1016/s0021-9797(02)00048-6.

Abstract

Addition of heptane to a sodium naphthenates/toluene/water system at 25 degrees C reduces the lamellar liquid-crystal phase range and increases the microemulsion phase range. Both of these effects result in the extension of the composition range where emulsions have low stability. This effect is even stronger at 40 degrees C. Heptane addition also results in the formation of very stable emulsions within the overlapping phase-existence ranges of aqueous (L1) and organic (L2) phases. Stable non-birefringent gel observed in equilibrium with L1 and L2 phases contains only a small percentage of water and sodium naphthenates. The swelling behavior of an unstable gel, an emulsion previously compressed by centrifugation, appears to be due to a stepwise thickening of the thin liquid films between the droplets.