Second-harmonic generation of solvated molecules using multiconfigurational self-consistent-field quadratic response theory and the polarizable continuum model

J Chem Phys. 2005 Oct 8;123(14):144117. doi: 10.1063/1.2055180.

Abstract

We present the first implementation of the quadratic response function for multiconfigurational self-consistent-field wave functions of solvated molecules described by a polarizable continuum model employing a molecule-shaped cavity. We apply the methodology to the first hyperpolarizability beta and, in particular, the second-harmonic generation process for a series of conjugated push-pull oligomers, as well as for para-nitroaniline. The effect of solvation on the dispersion of the hyperpolarizability and the change in the hyperpolarizability for increasing chain length of the oligomers in vacuum and in solution is considered. The effect of a correlated description is analyzed by comparing the Hartree-Fock hyperpolarizabilities to the multiconfigurational self-consistent-field hyperpolarizabilities. The effect of geometry relaxation in the solvent on the properties of the solvated molecules are also investigated.