Mechanism for degradation of poly(sodium acrylate) by bacterial consortium no. L7-98

J Biosci Bioeng. 2003;95(5):483-7.

Abstract

Poly(sodium acrylate) (PSA) can be degraded by consortia of several bacterial species. We investigated the degradation mechanism for PSA (average molecular weight, 2100) by consortium no. L7-98. PSA was used as the sole carbon source in a mineral salt medium. After cultivation, the PSA had a range of molecular weights, including low-molecular-weight compounds, which were purified by gel-permeation and reversed-phase column chromatography. One purified compound, B1, with the molecular weight of 200, had a carbonyl group next to the terminus, according to 1H and 13C nuclear magnetic resonance spectrometry and X-ray analysis of the crystal structure. Two categories of metabolites of PSA were detected in the culture by electrospray ionization mass spectrometry. Results of high-resolution mass spectrometry (HR-MS) suggested that one kind of compounds had a carbonyl group and that the other kind of compounds had an aldehyde group and a double bond. Compounds having the molecular weights of 200 and 272 were rapidly produced from an acrylic acid oligomer with the molecular weight of 258 by resting cells of the consortium. HR-MS showed that a methylene group at the terminal unit was oxidized to a carbonyl group and that the compound with the molecular weight of 200 was compound B1. From these results, we propose that the degradation pathway of PSA involves (i) oxidation of a methylene group to a carbonyl group next to the terminus, (ii) decarboxylation to form an aldehyde group and dehydrogenation to form a double bond between the terminal unit and the next unit, and (iii) oxidation of the aldehyde group to a carboxyl group followed by elimination of an acetic acid.