Molecular simulation of polymer assisted protein refolding

J Chem Phys. 2005 Oct 1;123(13):134903. doi: 10.1063/1.2041547.

Abstract

Protein refolding in vitro, the formation of the tertiary structure that enables the protein to display its biological function, can be significantly enhanced by adding a polymer of an appropriate hydrophobicity and concentration into the refolding buffer. A molecular simulation of the refolding of a two-dimensional simple lattice protein was presented. A protein folding map recording the occurrence frequency of specified conformations was derived, from which the refolding thermodynamics and kinetics were interpreted. It is shown that, in the absence of polymer, the protein falls into the "energy trapped" conformations characterized by a high intramolecular hydrophobic interaction, denoted as HH contact, and a high magnitude of the structure overlap function, chi. This makes it difficult for the protein to fold to the native state. The polymer with a suitable chain length, concentration, and hydrophobicity has formed complex with partially folded protein and created diversified intermediates with low chi. This gives more pathways for the protein to fold to the native state. At a given hydrophobicity, the short chain polymer has a broader concentration range where it assists protein folding than those of long chains. The above simulation agrees well with the experimental results reported elsewhere [Cleland et al., J. Biol. Chem. 267, 13327 (1992); ibid., Bio/Technology 10, 1013 (1992); Chen et al., Enzyme Microb. Technol. 32, 120 (2003); Lu et al., Biochem. Eng. J. 24, 55 (2005); ibid., J. Chem. Phys. 122, 134902 (2005); ibid., Biochem. Eng. J. (to be published)] and is of fundamental importance for the design and application of polymers for protein refolding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation*
  • Hydrophobic and Hydrophilic Interactions
  • Kinetics
  • Models, Chemical
  • Models, Molecular*
  • Monte Carlo Method
  • Polymers / chemistry*
  • Protein Conformation
  • Protein Folding*
  • Proteins / chemistry*
  • Thermodynamics

Substances

  • Polymers
  • Proteins