Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor

Apoptosis. 2005 Dec;10(6):1411-8. doi: 10.1007/s10495-005-2490-y.

Abstract

Overexpression of anti-apoptotic Bcl-2 family proteins may play an important role in the aggressive behavior of prostate cancer cells and their resistance to therapy. The Bcl-2 homology 3 domain (BH3) is a uniquely important functional element within the pro-apoptotic class of the Bcl-2-related proteins, mediating their ability to dimerize with other Bcl-2-related proteins and promote apoptosis. The BH3 inhibitors (BH3Is) function by disrupting the interactions mediated by the BH3 domain between pro- and anti-apoptotic members of the Bcl-2 family and liberating more Bax/Bak to induce mitochondrial membrane permeabilization. LNCaP-derived C4-2 human prostate cancer cells are quite resistant to non-tagged, human recombinant soluble Apo2 ligand [Apo2L, also Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL], a tumor specific drug that is now in clinical trials. However, when Apo2L/TRAIL was combined with the Bcl-xL inhibitor, BH3I-2', it induced apoptosis synergistically through activation of Caspase-8 and the proapoptotic Bcl-2 family member Bid, resulting in the activation of effector Caspase-3 and proteolytic cleavage of Poly(ADP-ribose) polymerase, events that were blocked by the pan-caspase inhibitor zVAD-fmk. Our data indicate that, in combination with the BH3 mimetic, BH3I-2', Apo2L/TRAIL synergistically induces apoptosis in C4-2 human prostate cancer cells through both the extrinsic and intrinsic apoptotic pathways.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects
  • Benzamides / pharmacology*
  • Caspases / metabolism
  • Cell Line, Tumor
  • Drug Screening Assays, Antitumor
  • Drug Synergism
  • Enzyme Activation / drug effects
  • Humans
  • Male
  • Models, Biological
  • Prostatic Neoplasms / enzymology
  • Prostatic Neoplasms / pathology*
  • TNF-Related Apoptosis-Inducing Ligand / pharmacology*

Substances

  • 3-iodo-5-chloro-N-(2-chloro-5-((4-chlorophenyl)sulphonyl)phenyl)-2-hydroxybenzamide
  • Benzamides
  • TNF-Related Apoptosis-Inducing Ligand
  • Caspases