PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors

Science. 2005 Oct 7;310(5745):86-9. doi: 10.1126/science.1116703.

Abstract

Initially poorly conducting PbSe nanocrystal solids (quantum dot arrays or superlattices) can be chemically "activated" to fabricate n- and p-channel field effect transistors with electron and hole mobilities of 0.9 and 0.2 square centimeters per volt-second, respectively; with current modulations of about 10(3) to 10(4); and with current density approaching 3 x 10(4) amperes per square centimeter. Chemical treatments engineer the interparticle spacing, electronic coupling, and doping while passivating electronic traps. These nanocrystal field-effect transistors allow reversible switching between n- and p-transport, providing options for complementary metal oxide semiconductor circuits and enabling a range of low-cost, large-area electronic, optoelectronic, thermoelectric, and sensing applications.