Detailed structural examinations of covalently immobilized gold nanoparticles onto hydrogen-terminated silicon surfaces

Chemistry. 2005 Dec 16;12(1):314-23. doi: 10.1002/chem.200500455.

Abstract

The modification of flat semiconductor surfaces with nanoscale materials has been the subject of considerable interest. This paper provides detailed structural examinations of gold nanoparticles covalently immobilized onto hydrogen-terminated silicon surfaces by a convenient thermal hydrosilylation to form Si-C bonds. Gold nanoparticles stabilized by omega-alkene-1-thiols with different alkyl chain lengths (C3, C6, and C11), with average diameters of 2-3 nm and a narrow size distribution were used. The thermal hydrosilylation reactions of these nanoparticles with hydrogen-terminated Si(111) surfaces were carried out in toluene at various conditions under N2. The obtained modified surfaces were observed by high-resolution scanning electron microscopy (HR-SEM). The obtained images indicate considerable changes in morphology with reaction time, reaction temperature, as well as the length of the stabilizing omega-alkene-1-thiol molecules. These surfaces are stable and can be stored under ambient conditions for several weeks without measurable decomposition. It was also found that the aggregation of immobilized particles on a silicon surface occurred at high temperature (> 100 degrees C). Precise XPS measurements of modified surfaces were carried out by using a Au-S ligand-exchange technique. The spectrum clearly showed the existence of Si-C bonds. Cross-sectional HR-TEM images also directly indicate that the particles were covalently attached to the silicon surface through Si-C bonds.