Origin of the tunnel anisotropic magnetoresistance in Ga(1-x)Mn(x)As/ZnSe/Ga(1-x)Mn(x)As magnetic tunnel junctions of II-VI/III-V heterostructures

Phys Rev Lett. 2005 Aug 19;95(8):086604. doi: 10.1103/PhysRevLett.95.086604. Epub 2005 Aug 17.

Abstract

We investigated spin-dependent transport in magnetic tunnel junctions made of III-V Ga(1-x)Mn(x)As electrodes and II-VI ZnSe tunnel barriers. The high tunnel magnetoresistance (TMR) ratio up to 100% we observed indicates high spin polarization at the barrier/electrodes interfaces. We found anisotropic tunneling conductance having a magnitude of 10% with respect to the direction of magnetization to linearly depend on the magnetic anisotropy energy of Ga(1-x)Mn(x)As. This proves that the spin-orbit interactions in the valence band of Ga(1-x)M(x)As are responsible for the tunnel anisotropic magnetoresistance (TAMR) effect.