Transfection of Trypanosoma cruzi with host CD40 ligand results in improved control of parasite infection

Infect Immun. 2005 Oct;73(10):6552-61. doi: 10.1128/IAI.73.10.6552-6561.2005.

Abstract

We have previously shown that infection by Trypanosoma cruzi, a parasitic protozoan, is reduced by injection of CD40 ligand (CD40L)-transfected 3T3 fibroblasts (D. Chaussabel, F. Jacobs, J. de Jonge, M. de Veerman, Y. Carlier, K. Thielemans, M. Goldman, and B. Vray, Infect. Immun. 67:1929-1934, 1999). This prompted us to transfect T. cruzi with the murine CD40L gene and to study the consequences of this transfection on the course of infection. For this, epimastigotes (Y strain) were electroporated with the pTEX vector alone or the pTEX-CD40L construct, and transfected cells were selected for their resistance to Geneticin G418. Then strain Y-, pTEX-, and pTEX-CD40L-transfected epimastigotes were transformed by metacyclogenesis into mammalian infective forms called Y, YpTEX, and YpTEX-CD40L trypomastigotes. Transfection of the CD40L gene and expression of the CD40L protein were assessed by reverse transcription-PCR and Western blot analysis. The three strains of parasites were infective in vitro for mouse peritoneal macrophages. When organisms were inoculated into mice, a very low level of parasitemia and no mortality were seen with the YpTEX-CD40L strain compared to the Y and YpTEX strains. Furthermore, the proliferative capacity and the secretion of gamma interferon were both preserved in spleen cells (SCs) from YpTEX-CD40L-infected mice but not with SCs from Y- and YpTEX-infected mice. These results suggest that the CD40L produced by transfected T. cruzi is involved in the modulation of an antiparasite immune response. Moreover, mice surviving YpTEX-CD40L infection resisted a challenge infection with the wild-type strain. Taken together, our data demonstrate the feasibility of generating a T. cruzi strain expressing a bioactive host costimulatory molecule that counteracts the immunodeficiency induced by the parasite during infection and enhances protective immunity against a challenge infection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Protozoan / blood
  • CD40 Ligand / analysis
  • CD40 Ligand / biosynthesis
  • CD40 Ligand / genetics*
  • Cell Proliferation
  • Chagas Disease / immunology
  • Chagas Disease / prevention & control*
  • Genetic Vectors / genetics
  • Gentamicins / pharmacology
  • Interferon-gamma / metabolism
  • Macrophages, Peritoneal / parasitology
  • Mice
  • Mice, Inbred Strains
  • Parasitemia / prevention & control
  • Protozoan Vaccines* / genetics
  • Protozoan Vaccines* / immunology
  • Spleen / cytology
  • Spleen / metabolism
  • Transfection
  • Trypanosoma cruzi / genetics*
  • Trypanosoma cruzi / immunology*
  • Trypanosoma cruzi / metabolism

Substances

  • Antibodies, Protozoan
  • Gentamicins
  • Protozoan Vaccines
  • CD40 Ligand
  • Interferon-gamma
  • antibiotic G 418