Enhanced luminescence of SiO2:Eu3+ by energy transfer from ZnO nanoparticles

J Chem Phys. 2005 Aug 22;123(8):084709. doi: 10.1063/1.2007647.

Abstract

ZnO nanoparticles embedded into SiO(2) by an ex situ method were shown to result in stable green emission with a peak at 510 nm compared to the normal peak at 495 nm from micron-sized ZnO powders. Green emission from ZnO nanoparticles was completely suppressed when they were embedded in SiO2 doped with Eu3+. Instead, the f-f emissions from Eu3+ were enhanced 5-10 times by energy transfer from the embedded ZnO nanoparticles to Eu3+. The Eu3+ luminescence increased as the Eu3+ concentration increased from 1 vs 5 mole % (for 10 mole % ZnO). In addition, the intensity increased as the embedded ZnO nanoparticles concentration increased up to 10 mole % (for 5 mole % Eu3+). The effects of phonon mediated energy transfer, quenching by activator interactions between Eu3+ ions, and energy back-transfer from Eu3+ ions to ZnO nanoparticles were discussed.