Probabilistic assessment of "dangerous" climate change and emissions pathways

Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15728-35. doi: 10.1073/pnas.0506356102. Epub 2005 Sep 6.

Abstract

Climate policy decisions driving future greenhouse gas mitigation efforts will strongly influence the success of compliance with Article 2 of the United Nations Framework Convention on Climate Change, the prevention of "dangerous anthropogenic interference (DAI) with the climate system." However, success will be measured in very different ways by different stakeholders, suggesting a spectrum of possible definitions for DAI. The likelihood of avoiding a given threshold for DAI depends in part on uncertainty in the climate system, notably, the range of uncertainty in climate sensitivity. We combine a set of probabilistic global average temperature metrics for DAI with probability distributions of future climate change produced from a combination of several published climate sensitivity distributions and a range of proposed concentration stabilization profiles differing in both stabilization level and approach trajectory, including overshoot profiles. These analyses present a "likelihood framework" to differentiate future emissions pathways with regard to their potential for preventing DAI. Our analysis of overshoot profiles in comparison with non-overshoot profiles demonstrates that overshoot of a given stabilization target can significantly increase the likelihood of exceeding "dangerous" climate impact thresholds, even though equilibrium warming in our model is identical for non-overshoot concentration stabilization profiles having the same target.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Climate*
  • Dangerous Behavior
  • Greenhouse Effect
  • Likelihood Functions
  • Models, Statistical*
  • Probability Theory
  • Risk Management
  • Temperature