Remote atmospheric breakdown for standoff detection by using an intense short laser pulse

Appl Opt. 2005 Sep 1;44(25):5315-20. doi: 10.1364/ao.44.005315.

Abstract

A remote atmospheric breakdown is a very rich source of UV and broadband visible light that could provide an early warning of the presence of chemical-biological warfare agents at extended standoff distances. A negatively chirped laser pulse propagating in air compresses in time and focuses transversely, which results in a rapid laser intensity increase and ionization near the focal region that can be located kilometers away from the laser system. Proof-of-principle laboratory experiments are performed on the generation of remote atmospheric breakdown and the spectroscopic detection of mock biological warfare agents. We have generated third harmonics at 267 nm and UV broadband radiation in air from the compression and focusing of femtosecond laser pulses. Fluorescence emission from albumin aerosols as they were illuminated by the femtosecond laser pulse has been observed.