A quantitative description of solute and fluid transport during peritoneal dialysis

Kidney Int. 1992 May;41(5):1320-32. doi: 10.1038/ki.1992.196.

Abstract

To investigate the relationship between dialysate glucose concentration and peritoneal fluid and solute transport parameters, 41 six-hour single dwell studies with standard glucose-based dialysis fluids containing 1.36% (N = 9), 2.27% (N = 9) and 3.86% (N = 23) anhydrous glucose were carried out in 33 clinically-stable continuous ambulatory peritoneal dialysis (CAPD) patients. Intraperitoneal dialysate volumes (VD) were determined from the dilution of 131I-albumin with a correction applied for its elimination from the peritoneal cavity (KE, ml/min). Diffusive mass transport coefficients (KBD) were calculated from aqueous solute concentrations (with a correction applied for the plasma protein concentration and, for electrolytes, also for the Donnan factor) during a period of dialysate isovolemia. The intraperitoneal amount calculated to be transported by diffusion was subtracted from the measured total amount of solutes in the dialysate, yielding an estimate of non-diffusive solute transport. The intraperitoneal dialysate volume over time curve was characterized by: initial net ultrafiltration (lasting on average 92 min, 160 min and 197 min and with maximum mean net ultrafiltration rates 6 ml/min, 8 ml/min and 14 ml/min, respectively, for the 1.36%, 2.27% and 3.86% solutions); dialysate isovolemia (lasting about 120 min for all three solutions) and fluid reabsorption (rate about 1 ml/min for all three solutions). KBD for glucose, potassium, creatinine, urea and total protein did not differ between the three solutions and the fractional absorption of glucose was almost identical for the three glucose solutions, indicating that the diffusive transport properties of the peritoneum is not influenced by the initial concentration of glucose or the ultrafiltration flow rate. About 50% of the total absorption of glucose occurred during the first 90 minutes of the dwell. The mean percentage of the initial amount of glucose which had been absorbed (%GA) at time t during the dwell could be described (r = 0.999) for all three solutions using the experimental formula %GA = 85 - 75.7 * e-0.005*t. After 360 minutes, about 75% of the initial intraperitoneal glucose amount had been absorbed corresponding to a mean (+/- SD) energy supply of 75 +/- 6 kcal, 131 +/- 18 kcal and 211 +/- 26 kcal for the three solutions. Non-diffusive (that is, mainly convective) transport was almost negligible for the less hypertonic solutions while it was estimated to account for 30 to 40% of the total peritoneal transport of urea, creatinine and potassium during the first 60 minutes of the 3.86% exchange.

Publication types

  • Clinical Trial
  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorption
  • Aged
  • Biological Transport, Active
  • Creatinine / metabolism
  • Dialysis Solutions / pharmacokinetics*
  • Diffusion
  • Energy Metabolism
  • Glucose / administration & dosage
  • Glucose / metabolism
  • Glucose / pharmacokinetics
  • Humans
  • Kidney Failure, Chronic / metabolism
  • Kidney Failure, Chronic / therapy
  • Kinetics
  • Middle Aged
  • Peritoneal Dialysis, Continuous Ambulatory* / methods
  • Potassium / metabolism
  • Proteins / metabolism
  • Urea / metabolism

Substances

  • Dialysis Solutions
  • Proteins
  • Urea
  • Creatinine
  • Glucose
  • Potassium