Laboratory investigation of aluminum solubility and solid-phase properties following alum treatment of lake waters

Water Res. 2005 Oct;39(16):3918-28. doi: 10.1016/j.watres.2005.06.025.

Abstract

Water samples from two southern California lakes adversely affected by internal nutrient loading were treated with a 20 mg/L dose of Al3+ in laboratory studies to examine Al solubility and solid-phase speciation over time. Alum [Al2(SO4)3 . 18 H2O] applications to water samples from Big Bear Lake and Lake Elsinore resulted in a rapid initial decrease in pH and alkalinity followed by a gradual recovery in pH over several weeks. Dissolved Al concentrations increased following treatment, reaching a maximum of 2.54 mg/L after 17 days in Lake Elsinore water and 0.91 mg/L after 48 days in Big Bear Lake water; concentrations in both waters then decreased to <0.25 mg/L after 150 days. The solid phase was periodically collected and analyzed using X-ray diffraction (XRD), differential scanning calorimetry-thermogravimetric analysis (DSC-TGA), scanning electron microscopy (SEM), and surface area analyses to investigate the nature of the reaction products and crystallinity development over time. Poorly ordered, X-ray amorphous solid phases transformed over time to relatively well-ordered gibbsite, with strong diffraction peaks at 4.8 and 4.3 A. XRD also indicated the formation of a second (possibly aluminosilicate) crystalline phase after 150 days in Lake Elsinore water. Surface areas also decreased over time as crystals reordered to form gibbsite/microcrystalline gibbsite species. DSC-TGA results suggested that the initially formed amorphous Al(OH)3 underwent transformation to >45% gibbsite. These results were supported by geochemical modeling using Visual MINTEQ, with Al solubility putatively controlled by amorphous Al(OH)3 shortly after treatment and approaching that of microcrystalline gibbsite after about 150 days. These findings indicate that Al(OH)3 formed after alum treatment undergoes significant chemical and mineralogical changes that may alter its effectiveness as a reactive barrier to phosphorus release from lake sediments.

MeSH terms

  • Alum Compounds / chemistry*
  • Aluminum / chemistry*
  • California
  • Environmental Monitoring
  • Microscopy, Electron, Scanning
  • Solubility
  • Water Supply
  • X-Ray Diffraction

Substances

  • Alum Compounds
  • aluminum sulfate
  • Aluminum