Design and synthesis of a thermally stable organic electride

J Am Chem Soc. 2005 Sep 7;127(35):12416-22. doi: 10.1021/ja053216f.

Abstract

An electride has been synthesized that is stable to auto-decomposition at room temperature. The key was the theoretically directed synthesis of a per-aza analogue of cryptand[2.2.2] in which each of the linking arms contains a piperazine ring. This complexant was designed to provide strong complexation of Na+ via pre-organization of a "crypt" that contains eight nonreducible tertiary amine nitrogens. The structure and properties indicate that, as with other electrides, the "anions" are electrons trapped in the cavities formed by close-packing of the complexed cations. The isostructural sodide, with Na- anions in the cavities, is also stable at and above room temperature.