Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation

J Chem Phys. 2005 Aug 1;123(5):054103. doi: 10.1063/1.1992483.

Abstract

We consider ways to quantify the overlap of the parts of phase space important to two systems, labeled A and B. Of interest is how much of the A-important phase space lies in that important to B, and how much of B lies in A. Two measures are proposed. The first considers four total-energy distributions, formed from all combinations made by tabulating either the A-system or the B-system energy when sampling either the A or B system. Measures for A in B and B in A are given by two overlap integrals defined on pairs of these distributions. The second measure is based on information theory, and defines two relative entropies which are conveniently expressed in terms of the dissipated work for free-energy perturbation (FEP) calculations in the A-->B and B-->A directions, respectively. Phase-space overlap is an important consideration in the performance of free-energy calculations. To demonstrate this connection, we examine bias in FEP calculations applied to a system of independent particles in a harmonic potential. Systems are selected to represent a range of overlap situations, including extreme subset, subset, partial overlap, and nonoverlap. The magnitude and symmetry of the bias (A-->B vs B-->A) are shown to correlate well with the overlap, and consequently with the overlap measures. The relative entropies are used to scale the amount of sampling to obtain a universal bias curve. This result leads to develop a simple heuristic that can be applied to determine whether a work-based free-energy measurement is free of bias. The heuristic is based in part on the measured free energy, but we argue that it is fail-safe inasmuch as any bias in the measurement will not promote a false indication of accuracy.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Chemistry, Physical / methods*
  • Computer Simulation
  • Energy Transfer
  • Entropy
  • Models, Chemical
  • Models, Statistical
  • Models, Theoretical
  • Thermodynamics