Wafer-scale fabrication of polymer-based microdevices via injection molding and photolithographic micropatterning protocols

Anal Chem. 2005 Aug 15;77(16):5414-20. doi: 10.1021/ac050286w.

Abstract

Because of their broad applications in biomedical analysis, integrated, polymer-based microdevices incorporating micropatterned metallic and insulating layers are significant in contemporary research. In this study, micropatterns for temperature sensing and microelectrode sets for electroanalysis have been implemented on an injection-molded thin polymer membrane by employing conventional semiconductor processing techniques (i.e., standard photolithographic methods). Cyclic olefin copolymer (COC) is chosen as the polymer substrate because of its high chemical and thermal stability. A COC 5-in. wafer (1-mm thickness) is manufactured using an injection molding method, in which polymer membranes (approximately 130 microm thick and 3 mm x 6 mm in area) are implemented simultaneously in order to reduce local thermal mass around micropatterned heaters and temperature sensors. The highly polished surface (approximately 4 nm within 40 microm x 40 microm area) of the fabricated COC wafer as well as its good resistance to typical process chemicals makes it possible to use the standard photolithographic and etching protocols on the COC wafer. Gold micropatterns with a minimum 5-microm line width are fabricated for making microheaters, temperature sensors, and microelectrodes. An insulating layer of aluminum oxide (Al2O3) is prepared at a COC-endurable low temperature (approximately 120 degrees C) by using atomic layer deposition and micropatterning for the electrode contacts. The fabricated microdevice for heating and temperature sensing shows improved performance of thermal isolation, and microelectrodes display good electrochemical performances for electrochemical sensors. Thus, this novel 5-in. wafer-level microfabrication method is a simple and cost-effective protocol to prepare polymer substrate and demonstrates good potential for application to highly integrated and miniaturized biomedical devices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrochemistry
  • Models, Chemical*
  • Polymers / chemistry*
  • Temperature

Substances

  • Polymers