Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review

Astrobiology. 2005 Aug;5(4):444-60. doi: 10.1089/ast.2005.5.444.

Abstract

The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Buffers
  • Earth, Planet*
  • Exobiology
  • Extraterrestrial Environment
  • Hydrogen-Ion Concentration
  • Kinetics
  • Models, Biological
  • Organic Chemicals
  • Origin of Life*
  • Oxidation-Reduction
  • Planets*
  • Space Simulation
  • Temperature

Substances

  • Buffers
  • Organic Chemicals