Intra- and intermolecular N-H...F-C hydrogen-bonding interactions in amine adducts of tris(pentafluorophenyl)borane and -alane

Inorg Chem. 2005 Aug 8;44(16):5921-33. doi: 10.1021/ic050663n.

Abstract

The reaction between B(C(6)F(5))(3) and NH(3)(g) in light petroleum yielded the solvated adduct H(3)N.B(C(6)F(5))(3).NH(3). Treatment with a second equivalent of B(C(6)F(5))(3) afforded H(3)N.B(C(6)F(5))(3). Attempts to prepare the analogous alane adduct were unsuccessful and resulted in protolysis. Related compounds of the form R'R' 'N(H).M(C(6)F(5))(3) were synthesized from M(C(6)F(5))(3) and the corresponding primary and secondary amines (M = B, Al; R' = H, Me, CH(2)Ph; R' ' = Me, CH(2)Ph, CH(Me)(Ph); R'R' ' = cyclo-C(5)H(10)). The solid-state structures of 13 new compounds have been elucidated by single-crystal X-ray diffraction and are discussed. Each of the borane adducts has a significant bifurcated intramolecular hydrogen bond between an amino hydrogen and two o-fluorines, while N-H...F-C interactions in the alane adducts are weaker and more variable. (19)F NMR studies demonstrate that the borane adducts retain the bifurcated C-F...H...F-C hydrogen bond in solution. Compounds of the type R'R' 'N(H).M(C(6)F(5))(3) conform to Etter's rules for the prediction of hydrogen-bonding interactions.