Silver(I) coordination polymers containing heteroditopic ureidopyridine ligands: the role of ligand isomerism, hydrogen bonding, and stacking interactions

Inorg Chem. 2005 Aug 8;44(16):5649-53. doi: 10.1021/ic050278y.

Abstract

New silver (I) coordination polymers has been successfully designed and synthesized using heteroditopic ureidopyridine ligands 1 and 2 via a combination of coordinations bonds, hydrogen bonding, and pi-pi stacking interactions. This study shows an example of the orientation of the pyridine nitrogen relative to the urea moiety (4-substituted, 1, or 3-substituted, 2), used to control the packing of resulting crystalline coordination polymers. The ureidopyridine ligands present some flexibility because of the conformational rotation around the central urea moiety. The co-complexation of the silver(I) cation by two pyridine moieties and of the PF(6)(-) counteranion by the urea moiety results in the formation of discrete [1(2)Ag](+)PF(6)(-), (3) and [2(2)Ag](+)PF(6)(-), (4) complexes presenting restricted rotation around the central urea functionality. The geometrical information contained in the structures of ligands 1 and 2 and the heteroditopic complexation of silver hexafluorophosphate are fully exploited in an independent manner resulting in the emergence of quasi-rigidly preorganized linear and angular building blocks of 3 and 4, respectively. Additional pi-pi stacking contacts involving interactions between the pi-donor benzene and the pi-acceptor pyridine systems reinforce and direct the self-assembly of the above-described combined structural motifs in the solid state. Accordingly, linear and tubular arrays of pi-pi stacked architectures are generated in the solid state by synergistic and sequential metal ion complexation, hydrogen bonding, and pi-pi stacking interactions.