Additive, dominance, and epistatic loss effects on preweaning weight gain of crossbred beef cattle from different Bos taurus breeds

J Anim Sci. 2005 Aug;83(8):1780-7. doi: 10.2527/2005.8381780x.

Abstract

(Co)variance components, direct and maternal breed additive, dominance, and epistatic loss effects on preweaning weight gain of beef cattle were estimated. Data were from 478,466 animals in Ontario, Canada, from 1986 to 1999, including records of both purebred and crossbred animals from Angus, Blonde d'Aquitaine, Charolais, Gelbvieh, Hereford, Limousin, Maine-Anjou, Salers, Shorthorn, and Simmental breeds. The genetic model included fixed direct and maternal breed additive, dominance, and epistatic loss effects, fixed environmental effects of age of the calf, contemporary group, and age of the dam x sex of the calf, random additive direct and maternal genetic effects, and random maternal permanent environment effects. Estimates of direct and maternal additive genetic, maternal permanent environmental and residual variances, expressed as proportions of the phenotypic variance, were 0.32, 0.20, 0.12, and 0.52, respectively. Correlation between direct and maternal additive genetic effects was -0.63. Breed ranking was similar to previous studies, but estimates showed large SE. The favorable effects of direct and maternal dominance (P < 0.05) on preweaning gain were equivalent to 1.3 and 2.3% of the phenotypic mean of purebred calves, respectively. The same features for direct and maternal epistatic loss effects were -2.2% (P < 0.05) and -0.1% (P > 0.05). The large SE of breed effects were likely due to multicollinearity among predictor variables and deficiencies in the dataset to separate direct and maternal effects and may result in a less reliable ranking of the animals for across breed comparisons. Further research to identify the causes of the instability of estimates of breed additive, dominance, and epistatic loss genetic effects, and application of alternative statistical methods is recommended.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breeding
  • Cattle / genetics*
  • Cattle / growth & development*
  • Epistasis, Genetic*
  • Female
  • Hybrid Vigor
  • Inheritance Patterns
  • Male
  • Models, Genetic
  • Pedigree
  • Weight Gain*