Evaluation of decay times in coupled spaces: reliability analysis of Bayeisan decay time estimation

J Acoust Soc Am. 2005 Jun;117(6):3707-15. doi: 10.1121/1.1903845.

Abstract

This paper discusses quantitative tools to evaluate the reliability of "decay time estimates" and inter-relationships between multiple decay times for estimates made within a Bayesian framework. Previous works [Xiang and Goggans, J. Acoust. Soc. Am. 110, 1415-1424 (2001); 113, 2685-2697 (2003)] have applied Bayesian framework to cope with the demanding tasks in estimating multiple decay times from Schroeder decay functions measured in acoustically coupled spaces. A parametric model of Schroeder decay function [Xiang, J. Acoust. Soc. Am. 98, 2112-2121 (1995)] has been used for the Bayesian model-based analysis. The relevance of this work is that architectural acousticians need to know how well determined are the estimated decay times calculated within Bayesian framework using Schroeder decay function data. This paper will first address the estimation of global variance of the residual errors between the Schroeder function data and its model. Moreover, this paper discusses how the "landscape" shape of the posterior probability density function over the decay parameter space influences the individual decay time estimates, their associated variances, and their inter-relationships. This paper uses experimental results from measured room impulse responses in real halls to describe a model-based sampling method for an efficient estimation of decay times, and their individual variances. These parameters along with decay times are relevant decay parameters for evaluation and understanding of acoustically coupled spaces.