How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment

Biomacromolecules. 2005 Jul-Aug;6(4):2312-9. doi: 10.1021/bm050228k.

Abstract

The major aim of this study was to better understand the importance of autocatalysis in poly(lactic-co-glycolic acid) (PLGA)-based microparticles used as controlled drug delivery systems. Upon contact with biological fluids, PLGA is degraded into shorter chain alcohols and acids. An accumulation of the latter can lead to significant drops in micro-pH and subsequent accelerated polymer degradation. The system size, determining the diffusion path lengths, plays a crucial role for the occurrence/absence of autocatalytic effects. Using an oil-in-water solvent-extraction/evaporation process, different-sized drug-free and drug-loaded, PLGA-based microparticles were prepared and physicochemically characterized (SEM, DSC, SEC, optical microscopy, and UV-spectrophotometry) before and upon exposure to simulated biological fluids. Based on these experimental results, an adequate mathematical theory was developed describing the dominating mass transfer processes and chemical reactions. Importantly, a quantitative relationship could be established between the dimension of the device and the resulting drug release patterns, taking the effects of autocatalysis into account.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calorimetry, Differential Scanning
  • Catalysis
  • Lactic Acid / chemistry*
  • Microscopy, Electron, Scanning
  • Microspheres*
  • Models, Theoretical
  • Particle Size
  • Polyglycolic Acid / chemistry*
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polymers / chemistry*

Substances

  • Polymers
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid