Non-invasive fetal RHD exon 7 and exon 10 genotyping using real-time PCR testing of fetal DNA in maternal plasma

Fetal Diagn Ther. 2005 Jul-Aug;20(4):275-80. doi: 10.1159/000085085.

Abstract

Objective: In this prospective study, we assessed the feasibility of foetal RHD genotyping by analysis of DNA extracted from plasma samples of Rhesus (Rh) D-negative pregnant women using real-time PCR and primers and probes targeted toward exon 7 and 10 of RHD gene.

Methods: We analysed 24 RhD-negative pregnant woman and 4 patients with weak D phenotypes at a gestational age ranging from 11th to 38th week of gestation and correlated the results with serological analysis of cord blood after the delivery.

Results: Non-invasive prenatal foetal RHD exon 7 genotyping analyses of maternal plasma samples was in complete concordance with the serological analysis of cord blood in all 24 RhD-negative pregnant women delivering 12 RhD-positive and 12 RhD-negative newborns. RHD exon-10-specific PCR amplicons were not detected in 2 out of 12 studied plasma samples from women bearing RhD-positive foetus, despite the positive amplification in RHD exon 7 region observed in all cases. In 1 case red cell serology of cord blood revealed that the mother had D-C-E-c+e+ C(w)- and the infant D+C-E-c+e+ C(w)+ phenotypes. RhD exon 10 real-time PCR analysis of cord blood was also negative. These findings may reflect that DC(w)- paternally inherited haplotype probably possesses no RHD exon 10. In another case no cord blood sample has been available for additional studies. The specificity of both RHD exon 7 and 10 systems approached 100% since no RhD-positive signals were detected in women currently pregnant with RhD-negative foetus (n = 8). Using real-time PCR and DNA isolated from maternal plasma, we easily differentiated pregnant woman whose RBCs had a weak D phenotype (n = 4) from truly RhD-negative patients since the threshold cycle (C(T)) for RHD exon 10 or 7 amplicons reached nearly the same value like C(T) for control beta-globin gene amplicons detecting the total DNA present in maternal plasma. However in these cases foetal RhD status cannot be determined.

Conclusion: Prediction offoetal RhD status from maternal plasma is highly accurate and enables implementation into clinical routine. We suggest that safe non-invasive prenatal foetal RHD genotyping using maternal plasma should involve the amplification of at least two RHD-specific products.

MeSH terms

  • Exons / genetics
  • Female
  • Fetal Diseases / blood
  • Fetal Diseases / diagnosis*
  • Fetal Diseases / genetics*
  • Genotype
  • Humans
  • Maternal-Fetal Exchange
  • Pregnancy
  • Prenatal Diagnosis / methods*
  • Prospective Studies
  • Reverse Transcriptase Polymerase Chain Reaction
  • Rh-Hr Blood-Group System / blood
  • Rh-Hr Blood-Group System / genetics*

Substances

  • Rh-Hr Blood-Group System
  • Rho(D) antigen