[Flow model of internal-loop granular sludge bed nitrifying reactor]

Sheng Wu Gong Cheng Xue Bao. 2003 Nov;19(6):754-7.
[Article in Chinese]

Abstract

Internal-loop granular sludge bed nitrifying reactor is a new type of aerobic nitrifying equipment and has shown a good potential for nitrification. To study the flow pattern and construct the flow model, the tracer tests were performed using pulse stimulus-response technique. Based on the experimental results, the flow pattern in the settling section and the circulating section of reactor were analyzed by axial dispersion model and tank-in-series model, respectively. The dispersion number D/uL of 0.00148 in the settling section indicates that its flow pattern is similar to plug flow reactor (PFR), and the series number N of 1.021 in the circulating section indicates that its flow pattern is similar to continuously stirred tank reactor (CSTR). During steady state, the theoretic hydraulic retention time is 360 min, and the actual hydraulic retention time is 341.2 min. The percentage of dead space in the reactor is 5.22%, thereinto the dead space caused by biomass (db ) is 0.75 % and the hydraulic dead space (dh) is 4.47%, which shows that the structural performance of the reactor is excellent. Based on the experiments and analysis, a model of CSTR and PFR in series was constructed. The actual hydraulic retention time distribution of the reactor is in good agreement with the model predictions. Since the relative error between them is 8.56%, the model is accurate to describe the flow pattern. The results have laid a foundation for the kinetic model of the reactor and will be helpful for its design and operation.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bioreactors*
  • Kinetics
  • Models, Theoretical
  • Nitrites / metabolism*
  • Sewage*

Substances

  • Nitrites
  • Sewage