Relaxation phenomena of hydrolyzed polyvinylamine molecules adsorbed at the silica/water interface I. Saturated homogeneous polymer layers

J Colloid Interface Sci. 2005 Nov 1;291(1):98-104. doi: 10.1016/j.jcis.2005.04.090. Epub 2005 Jun 15.

Abstract

Surface area exclusion chromatography was used to investigate the adsorption and reconformation characteristics of hydrolyzed polyvinylamine molecules at silica/water interfaces employing radiolabeled polymers. The polymer solution was injected at the inlet of the column, whereas the polymer was successively adsorbed on the stacked glass-fiber filters constituting the stationary phase of the column. The filters and effluent samples collected at the outlet were individually analyzed for radioactivity content, which provided the adsorption histogram and the relative affinity of the various polymers. For saturated polymer layers, the relaxation process was demonstrated when the exceedingly adsorbed molecules desorbed. Modifications in the adsorption on the successive filters were thus converted into changes in the interfacial area of adsorbed molecules, taking into account the deviation from the plateau adsorption expected for nonrelaxing systems. Adsorption characteristics of nonrelaxed polymer layers were determined from the adsorption values determined before relaxation occurred. Adsorption and relaxation characteristics were determined to depend strongly on molecular weight and degree of hydrolysis of the polyvinylamine molecules. Half-hydrolyzed polymers had adsorption and relaxation characteristics close to those of the fully hydrolyzed polyvinylamine. Accordingly, adsorption isotherms on the cellulose/water interface were carried out to possibly extend the main conclusions of the study.