14-3-3 protein signaling in development and growth factor responses

Curr Top Dev Biol. 2005:67:285-303. doi: 10.1016/S0070-2153(05)67009-3.

Abstract

Tyrosine and serine phosphorylation are central to cellular signaling in growth and development. 14-3-3 proteins function as dimeric phosphoserine-binding proteins with documented interactions throughout the eukaryotic proteome and are highly conserved in both the animal and plant kingdoms. Binding of 14-3-3 to a client protein can have a range of context-dependent effects, including conformational change, enzyme inhibition, a shielding effect, re-localization, and bridging between two molecules. Proteome-based strategies utilizing mass spectrometry have revealed an unprecedented central stage for 14-3-3 in signal transduction with interacting partners composing at least 0.6% of the cellular proteome. 14-3-3 has been shown to bind to the human GM-CSF, IL-3, and IL-5 receptors and is required for the transmission of cell survival. 14-3-3 is involved in survival-specific signals, acting not only at the receptor level but also at critical steps downstream of the receptor. This phosphoserine-mediated pathway works independently of tyrosine kinases, highlighting an alternative mechanism of signaling for this receptor family. Other growth factor receptors and their adaptors are also being shown to associate with 14-3-3 and/or have putative 14-3-3 interaction sequences, such as the prolactin receptor, IGF-1 receptor, and some G-protein coupled receptors. 14-3-3 proteins are remarkably conserved through eukaryotic organisms and in Drosophila are required for photoreceptor development, learning, timing of cell cycles, and maintenance of cellular polarity. These findings are elevating our initial description of biochemical interactions to a better understanding of 14-3-3 function at the level of the whole organism. Further study should explore the integration of phosphoserine and phosphotyrosine signaling by 14-3-3 proteins and the role of isoform-specific functions in higher organisms. The prevalence of functional 14-3-3 binding sites throughout the proteome, and especially among growth factor receptors and signaling molecules, reflects a global role for 14-3-3 in multiple cellular decision making.

Publication types

  • Review

MeSH terms

  • 14-3-3 Proteins / metabolism*
  • Animals
  • Gene Expression Regulation, Developmental
  • Humans
  • Intercellular Signaling Peptides and Proteins / pharmacology*
  • Signal Transduction*

Substances

  • 14-3-3 Proteins
  • Intercellular Signaling Peptides and Proteins