Endothelin-induced, long lasting, and Ca2+ influx-independent blockade of intrinsic secretion in pituitary cells by Gz subunits

J Biol Chem. 2005 Jul 22;280(29):26896-903. doi: 10.1074/jbc.M502226200. Epub 2005 May 26.

Abstract

The G protein-coupled receptors in excitable cells have prominent roles in controlling Ca2+-triggered secretion by modulating voltage-gated Ca2+ influx. In pituitary lactotrophs, spontaneous voltage-gated Ca2+ influx is sufficient to maintain prolactin release high. Here we show that endothelin in picomolar concentrations can interrupt such release for several hours downstream of spontaneous and high K+-stimulated voltage-gated Ca2+ influx. This action occurred through the Gz signaling pathway; the adenylyl cyclase-signaling cascade could mediate sustained inhibition of secretion, whereas rapid inhibition also occurred at elevated cAMP levels regardless of the status of phospholipase C, tyrosine kinases, and protein kinase C. In a nanomolar concentration range, endothelin also inhibited voltage-gated Ca2+ influx through the G i/o signaling pathway. Thus, the coupling of seven-transmembrane domain endothelin receptors to Gz proteins provided a pathway that effectively blocked hormone secretion distal to Ca2+ entry, whereas the cross-coupling to G i/o proteins reinforced such inhibition by simultaneously reducing the pacemaking activity.

MeSH terms

  • Adenylyl Cyclases / metabolism
  • Animals
  • Calcium / metabolism*
  • Calcium Channels / drug effects
  • Endothelin-1 / pharmacology*
  • Female
  • GTP-Binding Protein alpha Subunits / metabolism*
  • GTP-Binding Protein alpha Subunits, Gi-Go / metabolism
  • Pituitary Gland, Anterior / cytology
  • Pituitary Gland, Anterior / metabolism*
  • Prolactin / metabolism
  • Protein Subunits
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Endothelin / metabolism
  • Receptors, G-Protein-Coupled / physiology
  • Signal Transduction

Substances

  • Calcium Channels
  • Endothelin-1
  • GNAZ protein, human
  • GTP-Binding Protein alpha Subunits
  • Protein Subunits
  • Receptors, Endothelin
  • Receptors, G-Protein-Coupled
  • Prolactin
  • GTP-Binding Protein alpha Subunits, Gi-Go
  • Adenylyl Cyclases
  • Calcium