Influence of molecular weight on the phase behavior and structure formation of branched side-chain hairy-rod polyfluorene in bulk phase

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 1):041802. doi: 10.1103/PhysRevE.71.041802. Epub 2005 Apr 15.

Abstract

We report on an experimental study of the self-organization and phase behavior of hairy-rod pi -conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl]-i.e., poly[2,7-(9,9-bis(2-ethylhexyl)fluorene] (PF2/6) -as a function of molecular weight (M(n)) . The results have been compared to those of phenomenological theory. Samples for which M(n) =3-147 kg/mol were used. First, the stiffness of PF2/6 , the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2/6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and higher M(n) (LMW, M(n) < M(*)(n) and HMW, M(n) > M(*)(n) ) regimes, respectively, based on free-energy argument of nematic and hexagonal hairy rods and found to correspond to the experimental x-ray diffraction (XRD) results for PF2/6 . By using the lattice parameters of PF2/6 as an experimental input, the nematic-hexagonal transition has been predicted in the vicinity of glassification temperature (T(g)) of PF2/6 . Then, by taking the orientation parts of the free energies into account the nematic-hexagonal transition has been calculated as a function of temperature and M(n) and a phase diagram has been formed. Below T(g) of 80 degrees C only (frozen) nematic phase is observed for M(n)< M(*)(n) = 10(4) g/mol and crystalline hexagonal phase for M(n) > M(*)(n) . The nematic-hexagonal transition upon heating is observed for the HMW regime depending weakly on M(n) , being at 140-165 degrees C for M(n) > M(*)(n). Third, the phase behavior and structure formation as a function of M(n) have been probed using powder and fiber XRD and differential scanning calorimetry and reasonable semiquantitative agreement with theory has been found for M(n) >or=3 kg/mol. Fourth, structural characteristics are widely discussed. The nematic phase of LMW materials has been observed to be denser than high-temperature nematic phase of HMW compounds. The hexagonal phase has been found to be paracrystalline in the (ab0) plane but a genuine crystal meridionally. We also find that all these materials including the shortest 10-mer possess the formerly observed rigid five-helix hairy-rod molecular structure.