Oil coating of hydrophobic surfaces from aqueous media: formation and kinetic study

J Colloid Interface Sci. 2005 Jun 15;286(2):730-8. doi: 10.1016/j.jcis.2005.01.063.

Abstract

We perform oil coating of hydrophobic solid surfaces via aqueous media, from emulsions, and under the presence of a shear flow. The principle of such coating is based on the use of a system at the limit of aggregation to give rise to adhesion, with asymmetrical interfaces (oil droplet/water and solid surface/water) in order to favor the oil/surface adhesion in comparison to the oil/oil adhesion. This way, droplets stick to the solid substrate, whereas they are stable and homogeneously dispersed in the bulk. We have realized coatings from two systems of emulsions made of a mixture of hydroxy-terminated silicone oil and classical silicone oil and a mixture of sunflower oil and mineral oil. The kinetics of the coating is described by a Langmuir model where the adhesion between the oil particle and the surface is modeled as a first-order reaction. The resulting coatings are formed of oil droplets uniformly covering the solid surface. The coating density can vary with the nature of the experimental systems.