Lipopolymers from new 2-substituted-2-oxazolines for artificial cell membrane constructs

Macromol Biosci. 2005 May 23;5(5):384-93. doi: 10.1002/mabi.200500004.

Abstract

We present the synthesis of novel 2-oxazoline monomers with different 2-substituents and their consecutive conversion into lipopolymers by living cationic polymerization. The side functions of these monomers were varied to realize different steric needs and hydrogen bonding interactions of the polymer side chains. 2-(2'-N-pyrrolidonyl-ethyl)-2-oxazoline, 2-(3'-methoxymonoethyleneglycol)propyl-2-oxazoline, and 2-(3'-methoxytriethyleneglycol)propyl-2-oxazoline were synthesized. All of the monomers could be converted into the corresponding lipopolymers by living cationic polymerization using 2,3-di-O-octadecyl-1-trifluormethansulfonyl-sn-glycerol as the initiator. The characterization of the 2,3-di-O-octadecyl-glycerol-poly(2-oxazoline) lipopolymers by NMR spectroscopy, IR spectroscopy, and gel permeation chromatography revealed that the targeted molar masses and compositions can be controlled by the initial initiator/monomer ([M](0)/[I](0)) ratio for all the synthesized lipopolymers. The polydispersities were found to be narrow (polydispersity indices from 1.06-1.3). The amphiphilic lipopolymers were spread at the air-water interface (Langmuir-Blodgett film balance) and the effect of the polymer side groups and chain lengths upon the Pi-area (A) isotherms of the corresponding lipopolymer monolayers were compared and analyzed. The impact of the polymer side functionalities on a 2D gel formation was examined using an interfacial rheometer operated in an oscillating stress-strain mode. Interestingly enough, none of the newly synthesized lipopolymers showed a rheological transition. This somewhat surprising result not only verified that these 2D gels are not established by hydrogen bonding among hydrophilic polymer moieties, as earlier proposed, but also supported the concept of jammed surface micelles as the more likely origin for the gelation phenomenon. [Diagram: see text]

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Membranes, Artificial*
  • Oxazolone / analogs & derivatives*
  • Polymers / chemical synthesis*
  • Polymers / chemistry
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Membranes, Artificial
  • Polymers
  • Oxazolone