Correlation between antitumor activity, molecular weight, and conformation of lentinan

Carbohydr Res. 2005 Jun 13;340(8):1515-21. doi: 10.1016/j.carres.2005.02.032.

Abstract

A (1-->3)-beta-D-glucan having (1-->6) branching (L-FV-IB) from Lentinus edodes in water was degraded into seven fractions of different molecular weights by ultrasonic irradiation, and each was further fractionated into three parts, by precipitation from water into acetone at room temperature. The weight-average molecular weight (M(w)), radius of gyration (<S(2)>(z)(1/2)), and intrinsic viscosity ([eta]) of lentinan and its fractions in 0.9% NaCl aqueous solution and dimethyl sulfoxide (Me(2)SO) were determined by size-exclusion chromatography combined with multi-angle laser light scattering (SEC-LLS), LLS, and viscometry. Analysis of M(w), [eta], and <S(2)>(z)(1/2) in terms of known theory for worm-like chains yielded 2240 +/- 100 nm(-1), and 100 +/- 10 nm for molar mass per unit contour length (M(L)), and persistence length (q), respectively, corresponding with theoretical data for triple-helical chains. The [alpha](D) of lentinan in water-Me(2)SO mixtures indicated an order-disorder transition. The results indicated that lentinan exists as a triple helix in 0.9% NaCl aqueous solution and as a single flexible chain in Me(2)SO. Assays in vivo and in vitro against the growth of Sarcoma 180 solid tumor as well as the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method for lentinan showed that the triple-helix sample exhibited a relatively high inhibition ratio. Interestingly, the triple-helix lentinan with M(w) of 1.49 x 10(6) exhibited the highest antitumor activity in vivo, having an inhibition ratio (xi) of 49.5%, close to that of 5-fluorouracil (xi = 50.5%), whereas the bioactivity (xi = 12.3%) of its single flexible chains almost disappeared. The triple-helix conformation plays an important role in enhancing the antitumor effects of lentinan.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry*
  • Antineoplastic Agents / pharmacology*
  • Carbohydrate Conformation
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Chromatography, Gel
  • Lentinan / chemistry*
  • Lentinan / pharmacology*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Molecular Weight
  • Sarcoma 180 / pathology
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Lentinan