Direct laser writing defects in holographic lithography-created photonic lattices

Opt Lett. 2005 Apr 15;30(8):881-3. doi: 10.1364/ol.30.000881.

Abstract

As a well-established laser fabrication approach, holographic lithography, or multibeam interference patterning, is known for its capability to create long-range ordered large-volume photonic crystals (PhCs) rapidly. Its broad use is, however, hampered by difficulty in inducing artificially designed defects for device functions. We use pinpoint femtosecond laser ablation to remove and two-photon photopolymerization to add desired defective features to obtain photonic acceptors and photonic donors, respectively, in an otherwise complete PhC matrix produced by holographic lithography. The combined use of the two direct laser writing technologies would immediately make holographic lithography a promising industrial tool for PhC manufacture.