Somatic transgenesis in the avian model system

Birth Defects Res C Embryo Today. 2005 Mar;75(1):19-27. doi: 10.1002/bdrc.20033.

Abstract

The chick embryo is a versatile model system, in which classical embryology can be combined with modern molecular approaches. In the last two decades, several efficient methods have been developed to introduce exogenous genes into the chick embryo. These techniques allow alteration of gene expression levels in a spatially and temporally restricted manner, thereby circumventing embryonic lethality and/or eliminating secondary effects in other tissues. Here, we present the current status of avian somatic transgenic techniques, focusing on electroporation and retrovirus-mediated gene transfer. Electroporation allows quick and efficient gain-of-function studies based on transient misexpression of genes. Retroviral vectors, which are capable of integrating exogenous genes into the host chromosome, permit analysis of long-term effects of gene misexpression. The variety of methods available for somatic transgenesis, along with the recent completion of the chicken genome, are transforming the chick embryo into one of the most attractive model systems to examine function of genes that are important for embryonic development.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Chick Embryo
  • Chickens / genetics*
  • Gene Expression Regulation, Developmental
  • Gene Transfer Techniques*
  • Genetic Vectors*
  • Models, Animal*
  • Retroviridae / genetics
  • Transgenes*