Near-field photochemical imaging of noble metal nanostructures

Nano Lett. 2005 Apr;5(4):615-9. doi: 10.1021/nl047956i.

Abstract

The sub-diffraction imaging of the optical near-field in nanostructures, based on a photochemical technique, is reported. A photosensitive azobenzene-dye polymer is spin coated onto lithographic structures and is subsequently irradiated with laser light. Photoinduced mass transport creates topographic modifications at the polymer film surface that are then measured with atomic force microscopy (AFM). The AFM images correlate with rigorous theoretical calculations of the near-field intensities for a range of different nanostructures and illumination polarizations. This approach is a first step toward additional methods for resolving confined optical near fields, which can augment scanning probe methodologies for high spatial resolution of optical near fields.