Control of virus assembly: HK97 "Whiffleball" mutant capsids without pentons

J Mol Biol. 2005 Apr 22;348(1):167-82. doi: 10.1016/j.jmb.2005.02.045.

Abstract

The capsid of Escherichia coli bacteriophage HK97 assembles as a 420 subunit icosahedral shell called Prohead I which undergoes a series of maturation steps, including proteolytic cleavage, conformational rearrangements, and covalent cross-linking among all the subunits to yield the highly stable mature Head II shell. Prohead I have been shown to assemble from pre-formed hexamers and pentamers of the capsid protein subunit. We report here the properties of a mutant of the capsid protein, E219K, which illuminate the assembly of Prohead I. The mutant capsid protein is capable of going through all of the biochemically and morphologically defined steps of capsid maturation, and when it is expressed by itself from a plasmid it assembles efficiently into a Prohead I that is morphologically indistinguishable from the wild-type Prohead I, with a full complement of both hexamers and pentamers. Unlike the wild-type Prohead I, when the mutant structure is dissociated into capsomers in vitro, only hexamers are found. When such preparations are put under assembly conditions, these mutant hexamers assemble into "Whiffleballs", particles that are identical with Prohead I except that they are missing the 12 pentamers. These Whiffleballs can even be converted to Prohead I by specifically binding wild-type pentamers. We argue that the ability of the mutant hexamers to assemble in the absence of pentamers implies that they retain a memory of their earlier assembled state, most likely as a conformational difference relative to assembly-naive hexamers. The data therefore favor a model in which Prohead I assembly is regulated by conformational switching of the hexamer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacteriophages / metabolism*
  • Capsid / chemistry*
  • Capsid / metabolism
  • Capsid / ultrastructure
  • Capsid Proteins* / chemistry
  • Capsid Proteins* / genetics
  • Capsid Proteins* / metabolism
  • Capsid Proteins* / ultrastructure
  • Cryoelectron Microscopy
  • Models, Molecular
  • Protein Conformation*
  • Virus Assembly*

Substances

  • Capsid Proteins